BBA Report

BBA 41192

Compatibility of the components of nitrogenase from soybean bacteroids and free-living nitrogen-fixing bacteria

PATRICK M. MURPHY^{a,*} and BURTON L. KOCH^b

^aDepartment of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin, Madison, Wisc. 53706 (U.S.A.); and ^bDepartment of Agronomy and Soil Science, College of Tropical Agriculture, University of Hawaii (U.S.A.)

(Received September 10th, 1971)

SUMMARY

The ability of the components of nitrogenase from free-living nitrogen-fixing bacteria to cross-react and form active enzyme complexes with the components of the enzyme isolated from a symbiotic nitrogen-fixing system was tested. Nitrogenase components of Azotobacter vinelandii, Bacillus polymyxa cross-reacted with components of nitrogenase from Rhizobium japonicum bacteroids. No evidence of a cross reaction was obtained in the case of Clostridium pasteurianum.

Nitrogenase from symbiotic and non-symbiotic nitrogen-fixing agents is composed of two components, here designated Fr. 1 and Fr. 2 both of which are necessary for enzyme activity^{1, 2}. Furthermore, it has been shown that a considerable degree of compatibility exists between the two components of the enzyme prepared from the free-living organisms^{3, 4}. Results reported here indicate a similarity in some instances, between components of nitrogenase from symbiotic and non-symbiotic nitrogen-fixing bacteria.

Components of nitrogenase were prepared from Azotobacter vinelandii, Bacillus polymyxa, and Clostridium pasteurianum by procedures already published^{2,3,5}. Soybean nodules (obtained from plants —Glycine max.— inoculated with a commercial strain of Rhizobium japonicum) when collected and chilled slowly to dry ice temperatures contained no Fr. 2 activity after 24 h. It appears that the cold lability of this component parallels that already reported for the same component of the free-living bacteria². Fr. 1 retains activity after this treatment; the cold treatment was used in this study to obtain preparations free of Fr. 2 activity. Active preparations of Fr. 2 were prepared from nodules by the method of Klucas et al.¹. The acetylene reduction reaction^{6,7} was used to assay nitrogenase enzyme activity⁸.

^{*}Present address: The Agricultural Institute, Department of Soil Biology, Johnstown Castle, Wexford, Ireland.

296 BBA REPORT

TABLE I CROSS REACTIONS OF COMPONENTS OF NITROGENASE.

Specific activities in nmoles ethylene per min per mg Fr. 2 protein at 25°.

Components		Spec. act.	Enhancement (-fold)	
R. japonicum bacteroid	A. vinelandii			
Fr. 1	_	0		
-	Fr. 1	0		
_	Fr. 2	7.8		
-	Fr. $1 + 2$	60.0	7.7	
Fr. 1	Fr. 2	14.5	1.9	
	C. pasteurianum			
_	Fr. 1	0		
-	Fr. 2	21.0		
-	Fr. $1 + 2$	71.4	3.4	
Fr. 1	Fr. 2	1.0	0	
	B. polymyxa			
-	Fr. 1	0		
-	Fr. 2	1.45		
_	Fr. 1 + 2	12.40	8.5	
Fr. 1	Fr. 2	6.00	4.1	

Table I outlines the results obtained with nitrogenase Fr. 1 of R. japonicum bacteroids, prepared by cold treatment, and nitrogenase Fr. 2 of A. vinelandii, C. pasteurianum and B. polymyxa. In all instances Fr. 2 of the free-living nitrogen-fixing bacteria was contaminated with some Fr. 1 and so showed residual activity. The degree of enhancement of enzyme activity obtained with the homologous cross is shown and compared with that obtained for the heterologous cross of Fr. 1 of the bacteroids and Fr. 2 of the free-living forms. Approximately a 2-fold enhancement of enzyme activity was obtained with A. vinelandii; this represents 25% of the activity of the homologous cross. B. polymyxa Fr. 2 crossed with bacteroid Fr. 1 showed 50% of the activity of the B. polymyxa homologous cross, whereas no enhancement of bacteroid Fr. 1 was obtained with Fr. 2 of C. pasteurianum. Titration with different concentrations of components would be necessary to establish whether these percentages represent the relative affinities.

TABLE II CROSS REACTIONS OF COMPONENTS OF NITROGENASE FROM $R.\ JAPONICUM$ BACTEROIDS AND $A.\ VINELANDII$

Specific activities in nmoles ethylene per min per mg Fr. 2 protein at 25°.

Components		Spec. act.	Enhancement (-fold)
R. japonicum bacteroid	A. vinelandii		
Fr. 1	_	0	
Fr. 2	_	32.8	
Fr. 1 + 2	-	191.5	5.9
-	Fr. 1	0	
_	Fr. 2	4.1	
-	Fr. $1 + 2$	57.0	13.9
Fr. 1	Fr. 2	60.0	14.6
Fr. 2	Fr. 1	85.0	2.6

BBA REPORT 297

Table II outlines the results obtained with active Fr. 1 and Fr. 2 of *R. japonicum* bacteroids, prepared by ion-exchange chromatography¹, and components of *A. vinelandii* nitrogenase. In this instance the degree of enhancement obtained indicated that a highly active enzyme complex can be formed between Fr. 1 of bacteroids and Fr. 2 of *A. vinelandii*. Results also show that the reverse of this combination is possible and Fr. 2 of bacteroid nitrogenase will combine with Fr. 1 of *A. vinelandii* to give an active enzyme complex.

These results are interesting because they substantiate further the findings that the nitrogenase complexes as they occur in symbiotic and free-living nitrogen-fixing bacteria, are very similar.

This work was supported in part by National Science Foundation Grants GB-483 and GB-12116 and Public Health Service Grant A1-00848 from the National Institute of Allergy and Infectious Diseases.

REFERENCES

- 1 R.V. Klucas, B. Koch, S.A. Russell and H.J. Evans, Plant Physiol., 43 (1968) 1906.
- 2 W.A. Bulen and J.R. Le Comte, Proc. Natl. Acad. Sci. U.S., 56 (1966) 979.
- 3 R.W. Detroy, D.F. Witz, R.A. Parejko and P.W. Wilson, Proc. Natl. Acad. Sci. U.S., 61 (1968) 537.
- 4 M. Kelly, Biochim. Biophys. Acta, 191 (1969) 527.
- 5 J. Vandecasteele and R.H. Burris, J. Bacteriol., 101 (1970) 794.
- 6 R. Schöllhorn and R.H. Burris, Fed. Proc., 25 (1966) 710.
- 7 M.J. Dilworth, Biochim. Biophys. Acta, 127 (1966) 285.
- 8 R. Schöllhorn and R.H. Burris, Proc. Natl. Acad. Sci. U.S., 58 (1967) 213.

Biochim, Biophys, Acta, 253 (1971) 295-297